

- 1) It is more efficient to use common numerators, changing $\frac{3}{7}$ to $\frac{9}{21}$. It is then easy to compare, using the rule that when the numerators are the same, the smaller the denominator, the larger the fraction.
- 2) The numerators of the cut-off pieces are both 2 ($\frac{2}{q}$ and $\frac{2}{n}$). Therefore, it is easy to compare these fractions and say that piece A was longer to begin with as $\frac{2}{q}$ is the bigger fraction.

1) One possible solution is shown. There are many possible solutions where the fractions increase in size from the top left corner.

,	smallest			biggest	
smallest	$\frac{1}{36}$	<u> </u> 2	<u> </u> 6	<u> </u> 36	$\frac{1}{2}$
	$\frac{1}{9}$	<u>5</u> 36	2 9	7 18	7 12
	$\frac{7}{36}$	$\frac{1}{4}$	<u>5</u> 18	<u>5</u> 12	<u>3</u> 4
biggest <	13	<u>13</u> 36	49	<u>17</u> 36	<u> </u> 2
	<u> </u> 	2 3	5 6	8 9	17 18

